325 research outputs found

    Zinc(II) coordination polymers with pseudopeptidic ligands

    No full text
    Two new phenyl-bridged pseudopeptidic ligands have been prepared and structurally characterised. The nature of the ligands’ substituents play an important role in the nature of the solid state structure yielding either hydrogen bonded linked sheets of molecules or infinite hydrogen bonded networks. Both these ligands were reacted with a range of zinc(II) salts with the aim of synthesising coordination polymers and networks and exploring the role that anions could play in determining the final structure. The crystal structures of four of these systems (with ZnSO4 and ZnBr2) were determined; in one case, a 3D coordination network was obtained where zinc–ligand coordination bonds generated the 3D arrangements. Three other 3D networks were obtained by anion-mediated hydrogen bonding of coordination 1D chains or 2D sheets. These four very different structures highlight the important role played by the ligands’ substituents and the counteranions present in the system

    A twist in chiral interaction between biological helices

    Get PDF
    Using an exact solution for the pair interaction potential, we show that long, rigid, chiral molecules with helical surface charge patterns have a preferential interaxial angle ~((RH)^1/2)/L, where L is the length of the molecules, R is the closest distance between their axes, and H is the helical pitch. Estimates based on this formula suggest a solution for the puzzle of small interaxial angles in a-helix bundles and in cholesteric phases of DNA.Comment: 7 pages, 2 figures, PDF file onl

    STM observation of electronic wave interference effect in finite-sized graphite with dislocation-network structures

    Full text link
    Superperiodic patterns near a step edge were observed by STM on several-layer-thick graphite sheets on a highly oriented pyrolitic graphite substrate, where a dislocation network is generated at the interface between the graphite overlayer and the substrate. Triangular- and rhombic-shaped periodic patterns whose periodicities are around 100 nm were observed on the upper terrace near the step edge. In contrast, only outlines of the patterns similar to those on the upper terrace were observed on the lower terrace. On the upper terrace, their geometrical patterns gradually disappeared and became similar to those on the lower terrace without any changes of their periodicity in increasing a bias voltage. By assuming a periodic scattering potential at the interface due to dislocations, the varying corrugation amplitudes of the patterns can be understood as changes in LDOS as a result of the beat of perturbed and unperturbed waves, i.e. the interference in an overlayer. The observed changes in the image depending on an overlayer height and a bias voltage can be explained by the electronic wave interference in the ultra-thin overlayer distorted under the influence of dislocation-network structures.Comment: 8 pages; 6 figures; Paper which a part of cond-mat/0311068 is disscussed in detai

    A Synthetic Coiled-Coil Interactome Provides Heterospecific Modules for Molecular Engineering

    Get PDF
    The versatile coiled-coil protein motif is widely used to induce and control macromolecular interactions in biology and materials science. Yet the types of interaction patterns that can be constructed using known coiled coils are limited. Here we greatly expand the coiled-coil toolkit by measuring the complete pairwise interactions of 48 synthetic coiled coils and 7 human bZIP coiled coils using peptide microarrays. The resulting 55-member protein “interactome” includes 27 pairs of interacting peptides that preferentially heteroassociate. The 27 pairs can be used in combinations to assemble sets of 3 to 6 proteins that compose networks of varying topologies. Of special interest are heterospecific peptide pairs that participate in mutually orthogonal interactions. Such pairs provide the opportunity to dimerize two separate molecular systems without undesired crosstalk. Solution and structural characterization of two such sets of orthogonal heterodimers provide details of their interaction geometries. The orthogonal pair, along with the many other network motifs discovered in our screen, provide new capabilities for synthetic biology and other applications.National Institutes of Health (U.S.) (NIH Award GM067681)National Institutes of Health (U.S.) (NCRR Award RR-15301

    Targeting Antibody Responses to the Membrane Proximal External Region of the Envelope Glycoprotein of Human Immunodeficiency Virus

    Get PDF
    Although human immunodeficiency type 1 (HIV-1) infection induces strong antibody responses to the viral envelope glycoprotein (Env) only a few of these antibodies possess the capacity to neutralize a broad range of strains. The induction of such antibodies represents an important goal in the development of a preventive vaccine against the infection. Among the broadly neutralizing monoclonal antibodies discovered so far, three (2F5, Z13 and 4E10) target the short and hidden membrane proximal external region (MPER) of the gp41 transmembrane protein. Antibody responses to MPER are rarely observed in HIV-infected individuals or after immunization with Env immunogens. To initiate antibody responses to MPER in its membrane-embedded native conformation, we generated expression plasmids encoding the membrane-anchored ectodomain of gp41 with N-terminal deletions of various sizes. Following transfection of these plasmids, the MPER domains are displayed on the cell surface and incorporated into HIV virus like particles (VLP). Transfected cells displaying MPER mutants bound as efficiently to both 2F5 and 4E10 as cells transfected with a plasmid encoding full-length Env. Mice immunized with VLPs containing the MPER mutants produced MPER-specific antibodies, the levels of which could be increased by the trimerization of the displayed proteins as well as by a DNA prime-VLP boost immunization strategy. Although 2F5 competed for binding to MPER with antibodies in sera of some of the immunized mice, neutralizing activity could not be detected. Whether this is due to inefficient binding of the induced antibodies to MPER in the context of wild type Env or whether the overall MPER-specific antibody response induced by the MPER display mutants is too low to reveal neutralizing activity, remains to be determined

    Identification of bZIP interaction partners of viral proteins HBZ, MEQ, BZLF1, and K-bZIP using coiled-coil arrays

    Get PDF
    Basic-region leucine-zipper transcription factors (bZIPs) contain a segment rich in basic amino acids that can bind DNA, followed by a leucine zipper that can interact with other leucine zippers to form coiled-coil homo- or heterodimers. Several viruses encode proteins containing bZIP domains, including four that encode bZIPs lacking significant homology to any human protein. We investigated the interaction specificity of these four viral bZIPs by using coiled-coil arrays to assess self-associations as well as heterointeractions with 33 representative human bZIPs. The arrays recapitulated reported viral−human interactions and also uncovered new associations. MEQ and HBZ interacted with multiple human partners and had unique interaction profiles compared to any human bZIPs, whereas K-bZIP and BZLF1 displayed homospecificity. New interactions detected included HBZ with MAFB, MAFG, ATF2, CEBPG, and CREBZF and MEQ with NFIL3. These were confirmed in solution using circular dichroism. HBZ can heteroassociate with MAFB and MAFG in the presence of MARE-site DNA, and this interaction is dependent on the basic region of HBZ. NFIL3 and MEQ have different yet overlapping DNA-binding specificities and can form a heterocomplex with DNA. Computational design considering both affinity for MEQ and specificity with respect to other undesired bZIP-type interactions was used to generate a MEQ dimerization inhibitor. This peptide, anti-MEQ, bound MEQ both stably and specifically, as assayed using coiled-coil arrays and circular dichroism in solution. Anti-MEQ also inhibited MEQ binding to DNA. These studies can guide further investigation of the function of viral and human bZIP complexes.National Institutes of Health (U.S.) (NIH Award GM067681)National Science Foundation (U.S.) (NSF Award 0216437

    Atomic-accuracy prediction of protein loop structures through an RNA-inspired ansatz

    Get PDF
    Consistently predicting biopolymer structure at atomic resolution from sequence alone remains a difficult problem, even for small sub-segments of large proteins. Such loop prediction challenges, which arise frequently in comparative modeling and protein design, can become intractable as loop lengths exceed 10 residues and if surrounding side-chain conformations are erased. This article introduces a modeling strategy based on a 'stepwise ansatz', recently developed for RNA modeling, which posits that any realistic all-atom molecular conformation can be built up by residue-by-residue stepwise enumeration. When harnessed to a dynamic-programming-like recursion in the Rosetta framework, the resulting stepwise assembly (SWA) protocol enables enumerative sampling of a 12 residue loop at a significant but achievable cost of thousands of CPU-hours. In a previously established benchmark, SWA recovers crystallographic conformations with sub-Angstrom accuracy for 19 of 20 loops, compared to 14 of 20 by KIC modeling with a comparable expenditure of computational power. Furthermore, SWA gives high accuracy results on an additional set of 15 loops highlighted in the biological literature for their irregularity or unusual length. Successes include cis-Pro touch turns, loops that pass through tunnels of other side-chains, and loops of lengths up to 24 residues. Remaining problem cases are traced to inaccuracies in the Rosetta all-atom energy function. In five additional blind tests, SWA achieves sub-Angstrom accuracy models, including the first such success in a protein/RNA binding interface, the YbxF/kink-turn interaction in the fourth RNA-puzzle competition. These results establish all-atom enumeration as a systematic approach to protein structure that can leverage high performance computing and physically realistic energy functions to more consistently achieve atomic resolution.Comment: Identity of four-loop blind test protein and parts of figures 5 have been omitted in this preprint to ensure confidentiality of the protein structure prior to its public releas
    corecore